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ABSTRACT. I consider the sense in which language is “finite” for 

Wittgenstein, and also some of the implications of this question for Alan 

Turing’s definition of the basic architecture of a universal computing 

machine, as well as some of the vast technological, social, and political 

consequences that have followed from it. I shall argue that similar 

considerations about the relationship between finitude and infinity in 

symbolism play a decisive role in two of these thinkers’ most important 

results, the “rule-following considerations” for Wittgenstein and the proof of 

the insolubility of Hilbert’s decision problem for Turing.  Fortuitously, there 

is a recorded historical encounter between Wittgenstein and Turing, for 

Turing participated in Wittgenstein’s “lectures” on the foundations of 

mathematics in Cambridge in 1939; their interactions are documented in the 

text Wittgenstein’s Lectures on the Foundations of Mathematics edited by 

Cora Diamond.1 Although my aim here is not to adduce biographical details, 

I think their exchange nevertheless evinces a deep and interesting problem of 

concern to both. We may put this problem as that of the relationship of 

language’s finite symbolic corpus to (what may seem to be) the infinity of 

its meaning. 

 
I 

 

Wittgenstein’s philosophy of mathematics has sometimes been de- 

scribed as finitist; but, as I shall argue here, his actual and consistent 

position on the question of the finite and infinite in mathematics and 

language is already well expressed by a remark in his wartime 

Notebooks, written down on the eleventh of October, 1914: “Re- 

member that the ‘propositions about infinite numbers’ are all rep- 

resented by means of finite signs!” (Wittgenstein 1979, p. 10) The 

point is neither that signs cannot refer to infinite numbers nor that 

propositions referring to them are meaningless or somehow other- 

wise out of logical order. It is, rather, that even propositions referring 

to infinite numbers – for instance the hierarchy of transfinite car- 
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dinals discovered by Cantor – must have their sense (and hence their 

capability to represent ‘infinite quantities’) by and through a finite 

symbolization, for instance through a proof of finite length. That is, 

it must be such a proof – given in a finite number of steps and stated 

in a language with a finite number of symbol types – that gives us 

whatever epistemic access we can have to infinite quantities and 

numbers. This is closely connected with the remark, made several 

times in the Notebooks, that is also destined to serve as a kind of 

leitmotif underlying the Tractatus’ discussion of analysis, showing, 

and the elusive nature of logical form: that logic must “care for 

itself.” Here, this means that all the forms of possible meaning must 

already show up in the (formal) possibilities of signification in a 

finite, combinatorial language.  Wittgenstein concludes the entry for 

the eleventh of October by noting: “The propositions dealing with 

infinite numbers, like all propositions of logic, can be got by 

calculating the signs themselves (for at no step does a foreign 

element get added to the original primitive signs).  So here, too, the 

signs must themselves possess all the logical properties of what they 

represent” (pp. 10–11). Thus, the problem of the meaning of the 

infinite is a problem of the logic or grammar of finite signs – of how, 

in other words, the (formal) possibilities of signification in a finite, 

combinatorial language can give us whatever access we can have to 

infinite structures and procedures.  

In the lectures delivered in Cambridge in 1939, Wittgenstein 

proposes to discuss the “foundations of mathematics,” but not in 

order either to contribute to the analysis and description of such 

foundations or to give new calculations or even interpretations of 

calculations in mathematics itself.
2
 Rather, his aim is to remove 

certain misinterpretations or confusions that surround the analysis of 

the “foundations of mathematics,” particularly with respect to what 

is involved in the understanding and meaning of mathematical 

structures.
3
 Wittgenstein emphasizes that in speaking of 

understanding a mathematical structure, for instance a regular series 

of numbers or indeed the sequence of counting numbers themselves, 

we may speak of coming to “understand” the sequence; we may also 

speak of gaining a capability or mastering a “technique.” Yet what it 

is to “understand” (to “know how to,” or “to be able to,” continue “in 

the same way”) is not clear. The issue is the occasion for Turing’s 

first entrance into the discussion, in lecture number II: 
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Wittgenstein: We have all been taught a technique of 

counting in Arabic numerals. We have all of us learned 

to count – we have learned to construct one numeral 

after another. Now how many numerals have you 

learned to write down? 

Turing: Well, if I were not here, I should say  0א. 

Wittgenstein: I entirely agree, but that answer shows 

something. 

There might be many answers to my question. For 

instance, someone might answer, “The number of 

numerals I have in fact written down.” Or a finitist might 

say that one cannot learn to write down more numerals 

than one does in fact write down, and so might reply, 

‘the number of numerals which I will ever write down.’  

Or of course, one could reply “ 0א”, as Turing did. 

Now should we say: “How wonderful – to learn  0א 

numerals, and in so short a time! How clever we 

are!”?—Well, let us ask, “How did we learn to write  0א 

numerals?” And in order to answer this, it is illuminating 

to ask, “What would it be like to learn only 100,000 

numerals?”… 
 

I did not ask “How many numerals are there?”  This is 

immensely important. I asked a question about a human 

being, namely, “How many numerals did you learn to 

write down?” Turing answered “0א” and I agreed.  In 

agreeing, I meant that that is the way in which the 

number 0א is used. 

It does not mean that Turing has learned to write down 

an enormous number.  0א is not an enormous number.  

The number of numerals Turing has written down is 

probably enormous. But that is irrelevant; the question I 

asked is quite different. To say that one has written 

down an enormous number of numerals is perfectly 

sensible, but to say that one has written down  0א nu- 

merals is nonsense. (Diamond 1976, p. 31) 

 

Notably, Wittgenstein does not, here, at all deny the validity of the 

response that Turing initially (if guardedly) offers to the question 

about the capacity to write down numbers. Indeed, in endorsing 

Turing’s answer he distinguishes himself quite clearly from the 

finitist who would hold that the grammar of “can” goes no farther 

than that of “is,” that I cannot justifiably say that my capacity 

includes any more than actually has occurred or will occur. In 
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knowing how to write down Arabic numerals, a capacity we gain at 

an early age and maintain throughout our rational lives, we possess a 

capacity that is rightly described as the capacity to write down  0א 

different numbers. The attribution of this capacity is not, moreover, 

an answer to the “metaphysical” question of how many numbers 

there are; the question is, rather, what we, as human beings pos- 

sessing this familiar capacity, are thereby capable of.   

Yet how is this recognizably infinitary capacity underlain by our 

actual contact, in learning or communication, with a finite number of 

discrete signs (or sign-types) and a finite number of symbolic ex- 

pressions of the rules for using them? It is not difficult to see this as 

the central question of the so-called “Rule-Following Consider- 

ations” of the Philosophical Investigations, some of which was 

already extant in manuscript by 1939 (see, e.g., PI 143–155; 185–

240). However, we may also, I think, see this very question as 

already decisive in Turing’s development of the definition of a 

“universal computing machine” and its application to demonstrate 

the unsolvability of Hilbert’s decision problem in the remarkable 

“On Computable Numbers, with an Application to the Entschei- 

dungsproblem” written three years earlier, in 1936, and published in 

1937. Turing’s aim is to settle the question of whether there are 

numbers or functions that are not computable; that is, whether there 

are real numbers whose decimals are not “calculable by finite 

means” (Turing 1936, p. 58).  He reaches the affirmative answer by 

defining a “computing machine” that works to transform given 

symbolic inputs, under the guidance of internal symbolic “standard 

descriptions,” into symbolic outputs.   

According to what has come to be called “Turing’s thesis,” (or 

sometimes the “Church-Turing” thesis) every number or function 

that is “effectively” computable at all (in an “intuitive” sense of 

effective computability) is computable by some Turing machine, and 

thus that the architecture of the Turing machine indeed captures, 

replaces, or formalizes the “intuitive” notion of computability. The 

thesis is, today, almost universally accepted; however, this should 

not blind us to the depth of the philosophical issues involved in this 

particular way of understanding the nature of a technique or pro- 

cedure and the kind of relation between a finite calculus and its 

(potentially) infinite application that it suggests. According to Tu- 

ring’s thesis, for instance, what it is for anything (function or number) 

to be calculable at all is for it to be calculable by “finite means” (here, 
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using only a finite number of lexicographically distinct symbols and 

finitely many symbolically expressible rules for their inscription and 

transformation). Twice in the article (p. 59 and pp. 75–76), Turing 

justifies these restrictions by reference to the finitary nature of 

human cognition, either in memory or in terms of the (necessarily 

finite) number of possible “states of mind”;
4
 similarly, he supposes 

that we can distinguish between at most finitely many “mental 

states;” accordingly, it is necessary that a Turing machine can have 

only finitely many distinct states or operative configurations, and 

that its total “program” can be specified by a finite string of symbols.  

These restrictions prove fruitful in the central argument of “On 

Computable Numbers,” to show that there are numbers and functions 

that are not computable in this sense. The first step is to show how to 

construct a universal Turing machine, that is, a machine which, 

when given the standard description of any particular Turing 

machine, will mimic its behavior by producing the same outputs (pp. 

68–69). Because each standard description is captured by a finite 

string of symbols, it is possible to enumerate them and to work with 

the numbers (Turing calls them “description numbers”) directly (pp. 

67–68). Given that we know how to construct a universal machine, 

we now assume for reductio that there is a machine, H, that will test 

each such description number to determine whether it is the de- 

scription number of a machine that halts when given its own 

description number as an input (p. 73).
5 
It does this by simulating the 

behavior of each machine when it is given its own description 

number as an input. We also know that H itself, since it always 

produces a decision, always halts. However, the machine H itself has 

a description number, K. Now we consider what happens when the 

hypothesized machine considers “itself,” that is evaluates whether 

the machine corresponding to the description number K halts. We 

know by hypothesis that the machine H halts; however, as Turing 

shows, it cannot. For in considering K, the machine enters into an 

unbreakable circle, calling for it to carry out its own procedure on 

itself endlessly. We have a contradiction, and therefore must con- 

clude that there can be no such machine H.
6
  

The result at the heart of Turing’s paper is thus an application of 

the general formal or metalogical procedure, first discovered by 

Cantor, known as “diagonalization.” The procedure underlies Can- 

tor’s own identification of the transfinite cardinals, as well as 

Gödel’s two incompleteness theorems. Gödel’s application of a 
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procedure of “artithmetizing” syntax is, indeed, quite similar to 

Turing’s numbering of the Turing machines; and as Turing points 

out, Gödel’s first theorem is indeed itself an implication of his own 

result.
7
 It is no accident that both of these decisive results of 

metalogic rely on what Turing calls an application of the “diagonal 

procedure,” in which the enumerability of syntax (here: of standard 

descriptions) is the key to the possibility of an application of the 

regular structure of a symbolic system to “itself,” and hence to 

produce a particular local configuration (the Gödel sentence or 

Turing’s machine H) that stands, almost paradoxically, both within 

and without the system whose logic it captures. As Graham Priest 

(2002) has recently argued, the general structure of diagonalization 

can in fact be seen as underlying an exceedingly wide variety of 

problematic and paradoxical results in the history of philosophy, 

whenever theoretical reflection grasps the limits of thought in their 

(paradoxically thinkable) determinacy. With respect to language, this 

is equivalent to the attempt, common to Gödel and Turing, to model 

the formal capabilities of a system within that system itself, by way 

of arithmetization or enumeration. It is in this way that the de- 

termining syntax of the system – the rules determinately responsible 

for all of its capabilities – are captured and metalogically reflected 

“back” into the system itself, producing the point of undecidability 

or indeterminacy. 

The basis for this possibility in the results of Gödel and Turing 

alike is the possibility of “numbering” symbolic strings and so 

intervening on them. In this respect, one can say that diagonalization 

(whatever else it may be) is always an intervention on symbolic 

expressions; that is, it depends in a decisive way on the fact that 

meaningful procedures are necessarily captured, if at all, in a 

combinatorial symbolic expression that itself combines one or more 

signs according to definite rules. That is, diagonalization is in each 

case an intervention, not on procedures or numbers themselves, but 

on the ways procedures and numbers are necessarily expressed by 

means of finite strings of finitely many distinct symbols. This 

syntactical reference is essential for all forms of diagonalization, and 

it may thus be seen that the possibility of diagonalization and its 

results depends essentially, in each case, on the fact that language 

must make use of finitary means – a finite stock of symbols and a 

finite expression of rules – to accomplish its infinitary powers of 

symbolization.
8
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Now, it is familiar that Wittgenstein held, in general, a dim view 

of the purported results of various forms of the “diagonal pro- 

cedure,” including both Cantor’s multiple infinites and the truth of 

Gödel’s “self-referential” sentence. Do these doubts, expressed 

prominently in the Remarks on the Foundations of Mathematics, 

imply that there is not a very similar concern about the relationship 

of finite symbolism to infinitary techniques operative in Witt- 

genstein’s own thought about rules and symbols? I think not, for the 

following reasons. In his critical remarks about the Gödel sentence 

as well as about Cantor’s multiple infinities, Wittgenstein empha- 

sizes that the existence of a procedure – even one with no fixed end, 

like the procedure of writing down numbers in Arabic numerals – 

does not imply the existence of a superlative object, either a “huge 

number” or a completed list of decimal expansions that itself 

contains “infinitely many” members. To a certain extent at least, 

these suspicions extend to the “diagonal procedure” itself. Though 

Cantor can, with some justice, say how one can generate a decimal 

expansion that, as one can show, does not appear anywhere on an 

“infinite list” of expansions, he has not in fact generated it; diago- 

nalization is always in fact the “outcome” of an infinite procedure 

and cannot be said to have finished. However, Wittgenstein does not 

deny that there is such a procedure, and even that we can speak of it, 

with some justice, as one that shows (by giving sense to the 

proposition) that there is, for any set of decimal expansions, one that 

is not in this set (RFM II-29). Cantor has given us a procedure that 

allows us to say: given any series of numerical symbols, we can (i.e. 

we have a method that lets us) generate a different one. However, in 

understanding the possibility and implications of this procedure, we 

must also keep in mind that there is a difference between series of 

numerical symbols and series of numbers in the mathematical sense.  

A series in the mathematical sense is not a sequence of signs but a 

method for generating sequences of signs.
9
 There are analogies 

between the two uses, but they are different; and given the difference, 

Wittgenstein suggests, the existence of a sign (“0א”) that expresses 

the unlimited possibility – the unlimitedness of the method – of 

generating sequences of signs does not by itself ground a further 

calculus with this sign, for instance one relating it to “other” in- 

finities or other sizes of infinity. Nevertheless, as we have seen, it is 

just this ambiguity between sequences of signs and methods for 

generating sequences of signs upon which the claim of diago- 
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nalization to establish “positive” results depends. Diagonalization 

intervenes upon what are in fact sequences of signs (series in the 

non-mathematical sense) to produce a new number, a new sequence 

of signs which may itself be unlimited. What operates in this ambi- 

guity, and creates the “crossing” at infinity (real or illusory) between 

procedures and their symbolization that is essential to diagonal- 

ization, is our presumed infinitary capacity to produce symbols 

according to well-defined rules.   

In adducing these distinctions and casting doubt on the positive 

results of diagonalization, Wittgenstein’s point is emphatically not, 

however, to show the nonexistence or invalidity of diagonalization as 

an (infinitary) technique. Rather, it is to emphasize the extent to 

which this procedure or technique, as infinitary as it is, has a place 

within a human life, and does not derive its meaning or sense from 

any other source than this life itself. Much later, in RFM, Witt- 

genstein comes back to this point: 
 

The concept of the rule for the formation of an infinite 

decimal is – of course – not a specifically mathematical 

one.  It is a concept connected with a rigidly determined 

activity in human life. The concept of this rule is not 

more mathematical than that of: following the rule. Or 

again: this latter is not less sharply defined than the 

concept of such a rule itself.—For the expression of the 

rule and its sense is only part of the language-game: 

following the rule. (RFM VII – 42, p. 409) 
 

Again, Wittgenstein is not here denying that there is a valid concept 

of the rule for the formation of an infinite decimal; nor that this rule 

is a rule for the formation of something that is indeed infinite.  He is, 

rather, affirming that this formation – even in its strictness and 

rigidity – necessarily takes place as part of a human life, and gains its 

meaning and sense from this life. As it is capable of such infinite 

results, it would not, it seems, be quite right to call such a life, or the 

practice of following a rule within it (the language-game) that brings 

these about, “finite.” Rather, the practice is precisely a technique: 

something of which beings with a finite spatiotemporal extent are 

capable, but whose extension is in principle without limit. It is thus 

neither the finitude of language nor the infinitude of meaning that 

makes possible its effect, but rather the gulf between them, in which 

Wittgenstein recognizes the openness of a human life.   
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There are, I think, two preliminary conclusions that can be drawn 

so far.  The first is exegetical: Wittgenstein was certainly not in 1939, 

and probably never was, a finitist. That is, he never held that the 

finite character of language implied the non-existence or non-reality 

of infinite procedures. Rather, his focus is uniformly on the problem 

of the grammar of the infinite procedure: that is, just how it is that 

finite signs handled by finite beings gain the sense of infinity. This is 

none other than the radically posed question of the later Wittgen- 

stein’s thought: the question of the nature of a technique or practice.  

And it leads to the second conclusion, which is not exegetical but 

philosophical: that the infinity of technique is not an extension or 

intensification of the finite; nor is it a superlative or transcendent 

object that lies “beyond” all finite procedures. The infinity of tech- 

nique enters a human life, rather, at the point of what might seem at 

first a radical paradox: that of its capture in finite signs, the crossing 

of syntax and semantics wherever the infinite rule is thought and 

symbolized as finite.   

 
II 

 

Given this suggestion of a rather close connection between the 

implication of diagonalization and the upshot of Wittgenstein’s own 

rule-following considerations, how should we indeed view the 

sharply critical attitude he takes, both throughout the Remarks on the 

Foundations of Mathematics and elsewhere, toward Gödel’s incom- 

pleteness theorems themselves (surely to be reckoned among the 

most important outcomes of the “diagonal procedure”)? These re- 

marks (where they have not been assumed to show that Wittgenstein 

simply “misunderstood” Gödel’s result) have often been taken as 

support for an interpretation of his philosophy of mathematics as 

finitist or intuitionist, in that they have been taken as resting on a 

finitist denial of the utility or possibility of the “diagonal procedure.”  

But although it is true that, as Wittgenstein reminds us, diago- 

nalization is essentially an infinite procedure, he does not, as we 

have seen, deny its existence or possible utility. Moreover, in con- 

sidering his response to Gödel, we ought to keep in mind Witt- 

genstein’s remark in RFM that his purpose is not to address Gödel’s 

proof (that is, presumably, not to affirm or deny it) but rather to “by-

pass it” (RFM VII, sect. 19). In particular, as Floyd and Putnam 

(2000) have recently argued, close attention to Wittgenstein’s most 
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notorious remarks about Gödel’s proof shows that his point is not at 

all to deny Gödel’s formal proof, but rather to suggest alternative 

possibilities for its interpretation. Here is the most crucial portion of 

these remarks: 
 

I imagine someone asking my advice; he says: “I have 

constructed a proposition (I will use ‘P’ to designate it) 

in Russell’s symbolism, and by means of certain defi- 

nitions and transformations it can be so interpreted that it 

says: ‘P is not provable in Russell’s system’. Must I not 

say that this proposition on the one hand is true, and on 

the other hand is unprovable?  For suppose it were false; 

then it is true that it is provable. And that surely cannot 

be! And if it is proved, then it is proved that it is not 

provable. Thus it can only be true, but unprovable.”   

Just as we ask; “‘provable’ in what system?”, so we 

must also ask, “‘true’ in what system?” ‘True in Rus- 

sell’s system’ means, as was said: proved in Russell’s 

system; and ‘false in Russell’s system’ means: the 

opposite has been proved in Russell’s system. — Now 

what does your “suppose it is false” mean? In the 

Russell sense it means ‘suppose the opposite is proved in 

Russell’s system’; if that is your assumption, you will 

now presumably give up the interpretation that it is 

unprovable. And by ‘this interpretation’ I understand the 

translation into the English sentence.—If you assume 

that the proposition is provable in Russell’s system, this 

means it is true in the Russell sense, and the inter- 

pretation “P is not provable” again has to be given up.  If 

you assume that the proposition is true in the Russell 

sense, the same thing follows.  Further: if the proposition 

is supposed to be false in some other than the Russell 

sense, then it does not contradict this for it to be proved 

in Russell’s system. (What is called “losing” in chess 

may constitute winning in another game.) (RFM I, Ap- 

pendix III, sect. 8, pp. 118-19) 
 

As Floyd and Putnam emphasize, although Wittgenstein does not 

dispute the validity of Gödel’s proof itself, he raises the question of 

its correct interpretation. This does not involve disputing any of the 

mechanics that leads to the derivation of the “Gödel sentence” which 

“asserts” its own “unprovability.” It does involve, however, raising a 

series of questions for the usual interpretation of the Gödel sentence 

that began with Gödel himself and has continued to be presupposed 
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in most discussions of it. On this interpretation, the sentence shows 

the existence of a “mathematical truth” that cannot be proven by a 

formal system such as Prinicipia Mathematica and thus demon- 

strates the incompleteness of that system.
10

   

Although this interpretation is still presupposed in virtually all 

discussions of Gödel’s proof, it is reached, as Gödel himself pointed 

out, only through an essentially informal argument. (The argument is 

that P must be true, since if it were false “it would be true” that it can 

be proven, which cannot be the case, assuming the soundness of PM; 

and that since it can thus not be proven, and this is just what it 

“asserts,” it is therefore true).
11

 And although countless interpreters 

have followed Gödel in seeing his result as demonstrating the 

capacity of the human mind to grasp truths unprovable in any formal 

system, there is, as Floyd and Putnam point out, an alternative 

interpretation suggested by Wittgenstein’s remarks. On this alter- 

native, there is not (or at least there has not been shown to be) a 

unified sense of “truth” that subsumes the use of this predicate both 

within the formalism of Principia Mathematica and in the ordinary 

language in which the informal, metalogical argument is given. If we 

relax this assumption of a unified sense of “truth” between intra- and 

extra-systematic contexts, then we can see Gödel’s formal result as 

having quite a different significance than Gödel himself suggests.   

Specifically, recall that Gödel’s first theorem constructs a sen- 

tence P such that, as is provable in PM or a related system, P  

~Prov([P]), where Prov is a one-place “provability predicate” and 

enclosure in square brackets gives the Gödel number of the formula 

enclosed. Additionally, the “provability predicate” itself is defined 

by means of the predicates NaturalNo(x), and Proof(x,t), where 

NaturalNo(x) is interpreted as “x is a natural number” and Proof(x,t) 

is interpreted as a relation supposed to hold between two numbers 

when x is the Gödel number of a proof whose last line has the Gödel 

number t.
12

 (Here, t abbreviates an expression which calculates out to 

the Gödel number of P itself). All of these are, of course, inter- 

pretations, and might be resisted under the right circumstances. In 

particular, suppose we actually assume that ~P is proven in PM (or, 

one day, actually come across a proof of it). Then we are in a 

position, of course, also to prove Prov([P]).  In this case, however, as 

Wittgenstein points out, we might well be justified in dropping the 

interpretation that holds that Prov([P]) is in fact a provability predi- 

cate. And if we drop this interpretation, there is no need to conclude 
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that the Gödel sentence is indeed something that is “true, but un- 

provable in PM.”   

How, though, might we justifiably drop the interpretation of 

Prov([P]) as “P is provable in PM”? As Floyd and Putnam point out, 

we might take the (successful, as we are now supposing) proof of ~P 

to demonstrate that PM is (not inconsistent but) ω-inconsistent.
13

 If 

PM is ω-inconsistent, though, then in every admissible interpretation 

of PM (i.e., every interpretation which fits at least one model) there 

are, in addition to the natural numbers, entities which are not natural 

numbers; and NaturalNo(x) can no longer be interpreted as “x is a 

natural number.” Moreover, Proof (x,t) can no longer be interpreted 

as relating the Gödel numbers of two formulas (one of which is a 

proof of the other), since in every admissible model its extension will 

contain some elements that are not natural numbers at all. This 

means that – supposing that there is a proof of ~P – it would no 

longer be tenable to interpret the Prov(x) predicate, defined in terms 

of the Proof (x,t) and NaturalNo(x), as “P is provable in PM.” We 

would have to, as Wittgenstein suggests, “give up” this interpretation, 

and along with it, give up the interpretation of P as saying that it, 

itself, is unprovable. 

Accordingly, Floyd and Putnam argue, it is in fact not possible 

simply to assume the informal interpretation that Gödel gave to his 

own theorem, that of showing the existence of “mathematical truths” 

that cannot be proven or disproven in any given system such as PM.  

As Wittgenstein effectively points out, we must distinguish here 

between what is actually established by the mathematical result itself, 

and the “metaphysical” claims that are made on its behalf: 
 

That the Gödel theorem shows that (1) there is a well-

defined notion of “mathematical truth” applicable to 

every formula of PM; and (2) that, if PM is consistent, 

then some “mathematical truths” in that sense are un- 

decidable in PM, is not a mathematical result but a 

metaphysical claim. But that if P is provable in PM then 

PM is inconsistent and if ~P is provable in PM then PM 

is ω-inconsistent is precisely the mathematical claim that 

Gödel proved. What Wittgenstein is criticizing is the 

philosophical naivete involved in confusing the two, or 

thinking that the former follows from the latter. But not 

because Wittgenstein wants simply to deny the meta- 

physical claim; rather, he wants us to see how little sense 

we have succeeded in giving it.14 
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More generally, at the heart of Wittgenstein’s critical remarks about 

Gödel’s proof is his skepticism that there is such a well-defined 

notion of “mathematical truth” that can be held in common between 

a system such as Principia Mathematica and the English “trans- 

lations” of various of its notions, and so can license the usual 

interpretation of Gödel’s result as showing that there are “truths” that 

cannot be proven in Principia (or any given system).  In particular, if, 

as Wittgenstein suggests, there is indeed no neutral sense of “truth” 

that can be used to characterize both sentences in PM and their 

English translations, then there is no reason to suspect that Gödel’s 

proof indeed shows what it has most often been taken to, that there is 

a “truth” that cannot be proven or disproven by PM. What we have, 

instead, is simply a particular sentence in PM, one that formulates a 

“perfectly ordinary” and undistinguished arithmetical claim, one that 

bears literally no implications for the powers or structure of the 

system as a whole.   

When Gödel’s theorem and its broader philosophical implica- 

tions are discussed, the usual framework of discussion is a model-

theoretic conception of truth. That is, the truth of the Gödel sentence 

P is conceived as a matter of its holding for a (natural) model, where 

it is assumed furthermore that there is at least one model where all of 

the objects of which it holds are natural numbers. As we have just 

seen, even remaining within a model-theoretic conception of truth, 

this last assumption is disputable, and might indeed well be disputed 

if a proof of ~P were to be given. However, just as importantly, the 

model-theoretic conception of truth itself might be disputed. Witt- 

genstein himself never held such a conception, tending to suggest 

instead a disquotational or redundancy theory.
15

 On such a theory, as 

he suggests in the passage on Gödel’s proof itself, there is no 

language- or system-independent notion of truth, and so there is no 

absolute sense to the claim that the Gödel sentence P expresses a 

“mathematical truth.” Instead, as Wittgenstein suggests, the only 

available sense of “true” that is evidently applicable to the Gödel 

sentence, conceived as a sentence of PM, is the sense “proven in 

PM.” Under the assumption that this is indeed the only relevant 

sense of “true,” though, the Gödel sentence simply collapses to a 

version of the “Knower Paradox” (the sentence P that says: “P is 

known to be false”) or the liar paradox: P iff it is not true that P.
16

 

(Here, we are still maintaining that Prov(x) can be interpreted as a 
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“Proof predicate” (and accordingly, under these assumptions, as a 

truth or knowledge predicate).)
17

  This may again tend to suggest the 

inconsistency of PM, but crucially, it does not at all suggest that 

Gödel’s proof bears witness to a substantial “truth” that is beyond 

the capacity of PM to prove.   

To summarize, then, there are at least four ways, implicit in 

Wittgenstein’s remarks, that we might resist the strong claim usually 

associated with Gödel’s first incompleteness theorem (i.e. that it 

shows there is a “truth” that is beyond the capacity of PM to prove or 

disprove). First, we might simply abstain from interpreting the Gödel 

sentence P in terms of truth, falsity, provability, or “self-reference” 

at all. On this option, the derivability of the Gödel sentence in PM 

simply shows that a “perfectly ordinary” and unremarkable arith- 

metical sentence of PM is derivable. There are then, quite simply, no 

further consequences for the nature or structure of PM at all. Second, 

while agreeing to interpret the Gödel sentence in terms of issues of 

truth and provability, we might refuse the model-theoretic con- 

ception of truth and opt for a disquotational notion. Then the Gödel 

sentence is just equivalent to the Liar paradox, and raises the same 

issues as does that paradox. These may (but do not obviously) 

include the implication that PM is inconsistent.
18

 Third, we might 

agree to both the interpretation in terms of truth and falsity and the 

model-theoretic conception of truth, and still resist the interpretation 

of “Prov(x)” as a “provability predicate”; this is the interpretation 

suggested by Floyd and Putnam, according to which there is no 

admissible interpretation of PM whose models do not contain objects 

that are not natural numbers, and PM is accordingly ω-inconsistent 

(although not necessarily inconsistent outright); and fourth (and 

finally), we may, on any of the first three options or for other reasons, 

take the Gödel sentence to show PM to be (outright) inconsistent.  

On any of these four options, the Gödel sentence does not have 

the consequence of showing that “there is” a mathematical truth that 

can be neither proven nor disproven in PM. This is enough to 

underwrite Wittgenstein’s marked suspicion about the result as it is 

usually presented, and to show that it would be over-hasty simply to 

concur with the metalogical interpretation that Gödel himself gives.  

It is not, in fact, completely clear which of these four “deflationary” 

options Wittgenstein himself favors; in his explicit remarks on 

Gödel’s result he seems to waver among them. However, we may 

nevertheless draw some general conclusions from the availability of 
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these four options itself. Significantly, on any but the first option, the 

Gödel sentence effectively suggests the inconsistency or at least ω-

inconsistency of Principia Mathematica (or any system for which 

there is a Gödel sentence). This may seem, at first, an alarming 

suggestion, but note that this suggestion just amounts, in each case, 

to the suggestion that a sentence that has the “special” form of the 

Gödel sentence will produce a contradiction or antinomy; there is, as 

yet, no implication as to the further consequences or implications of 

such a contradiction.
19

 And since the first option – on which the 

Gödel sentence is taken simply as a normal, arithmetical sentence of 

PM – seems to amount more to opting out of metalogic than pur- 

suing it, we may well take this general implication of the other three 

options to be a generally legitimate one, assuming we wish both to 

interpret the Gödel sentence metalogically and resist the usual in- 

terpretation in terms of “incompleteness.” Indeed, it seems we here 

have, once again, a vivid illustration of the general choice that the 

phenomena of systematicity and self-reference universally face us 

with: the choice between (consistency with) incompleteness (Gödel’s 

interpretation, and the usual gloss on his result) or inconsistency and 

paradox (with the completeness of a system understood to be capable 

of formulating – though inconsistently! – its own logic of proof, or 

truth, entirely within itself). 

It might seem at first as if this second way of looking at things is 

simply incoherent, or ruled out on metalogical grounds. Are we not 

in a position to know that Principia Mathematica, for instance, is not 

inconsistent, and so that it cannot contain the kind of contradiction 

that threatens to appear within it, on this interpretation? If the answer 

is indeed affirmative, then it might seem that we can rule out a 

Wittgenstein-style interpretation of Gödel’s result and must indeed 

opt for the Gödel-style interpretation on which it demonstrates in- 

completeness. However, it is highly significant that we can “verify” 

the consistency of a system such as Principia Mathematica (for 

instance, by means of a model-theoretic soundness proof) only from 

the position of a metalanguage outside the system whose consistency 

is thereby proven. Moreover, Gödel’s second “incompleteness” theo- 

rem shows precisely that the consistency of a system cannot be 

proven by that system itself. Thus, while we may be able to convince 

ourselves of the consistency of a system like Principia Mathematica, 

which we can step “outside of” and treat from the position of a 

metalanguage (here, English), where we are concerned with the very 
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system we are ourselves using, we do not have this option.
20

 In this 

case, it indeed becomes much more plausible that the constructability 

of the Gödel sentence for the system indeed implies the existence of 

contradictions, such as a sentence that says of “itself” that it is not 

(provable and hence not) true. 

But does not the presence of such a contradiction vitiate the 

system in which we are working entirely, since (as can be formally 

shown) anything can be proven from a contradiction? The claim that 

it does, and hence the vehement desire to prohibit or rule out con- 

tradiction at virtually any cost, is one of the most prominent supports 

of the “foundationalist” picture of formal systems that is, in all of his 

engagements with the philosophy of mathematics, one of Wittgen- 

stein’s most central critical targets. This criticism leads him to 

interrogate the “superstitious dread and veneration by mathema- 

ticians in the face of a contradiction,”
21

 as well as the whole con- 

ception of the work of the researcher in mathematics or mathematical 

logic that follows from the attempt to detect or preclude “hidden” 

contradictions. In particular, as Wittgenstein suggests, there is in fact 

no way that a “hidden contradiction” can vitiate a calculus as it is 

actually used. For if the contradiction remains “hidden,” it has no 

effect on our actual practice of calculation; and if it is “discovered,” 

then we need not act on it, and so again it can cause no harm. Thus: 
 

One may say, “From a contradiction everything would 

follow.” The reply to that is: Well then, don’t draw any 

conclusions from a contradiction; make that a rule. You 

might put it: There is always time to deal with a con- 

tradiction when we get to it. When we get to it, shouldn’t 

we simply say, “This is no use—and we won’t draw any 

conclusions from it”? (Diamond 1976, Lecture XXI, p. 

209)  
 

Elsewhere, Wittgenstein likens the situation of being faced with a 

contradiction to that of being given two conflicting orders, or being 

faced with two arrows pointing in opposite directions. That, in these 

situations, we do not know what the rules or orders are telling us to 

do and so, in that sense, “could” do anything “in accordance” with 

them, does not mean that we must do anything at all; we might 

simply abstain from acting. Or we might indeed take it that “any- 

thing is now permitted,” but this would amount not so much to 

showing that the original calculus was out of order, as to giving up 
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on the possibility of using a regular calculus to determine our action 

at all.  Thus, there is no special need to worry about the presence of 

“hidden contradictions” and seek to develop a calculus.  

This emphatically does not mean that we do not or even should 

not attempt to reason in accordance with the law of non-contra- 

diction; indeed, Wittgenstein takes the fact that we do in fact do so, 

and regularly criticize those who violate it, to be an important and 

deep constitutive fact about (what we call) reasoning itself, such that 

anyone who did not reason in general in accordance with the law of 

noncontradiction, or respect its status as an overarching principle, 

would not be doing anything that we could recognize as reasoning or 

calculating at all. Also, we can and do construct our calculi with a 

view to avoiding – as much as is possible, anyway – the likelihood of 

encountering the situation of contradiction in which we, “entangled 

in our rules” as it were, are stopped and do not know how to go on.  

Wittgenstein’s consideration of contradictions and their “status in 

civil life” does not show, therefore, that it is not an important and 

even constitutive element of our ordinary practices that we are com- 

mitted, in practice, to avoiding them.
22

 But it suffices to show that 

the existence of contradictions alone is not enough to completely 

vitiate these ordinary practices or render them ineffective.    

This position about the role of contradiction is not at all im- 

plausible when applied to reasoning in a natural language such as 

English; for it is extremely plausible that there are contradictions in 

English, but this clearly does not make it rationally possible to “draw 

any conclusion at all” or vitiate the usefulness of reasoning in 

English. Nevertheless, when applied to “artificial” systems and tech- 

niques of calculation that we create, it is sufficiently counter-

intuitive, or at least at odds with the ordinary particular self-

conception of mathematicians and logicians, that it is regularly 

rejected by them as absurd or obviously incoherent. From the 

perspective of foundationalist assumptions, indeed, it can seem just 

obvious that the presence of a contradiction within a system, hidden 

or not, must have profoundly destructive consequences for the 

integrity of that system and cannot simply be handled in the offhand 

way that Wittgenstein suggests. This conception is regularly accom- 

panied by a conception of logical systems or calculi as more or less 

“accurate” to the extra-logical reality that they concern, a conception 

which suggests that there could be calculi that are more or less 
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effective and that a calculus containing contradictions would not be 

effective at all.   

In the 1939 Lectures, Turing himself suggests that at least one of 

the problems with tolerating contradictions in a calculus is that the 

presence of a hidden contradiction in a calculus used for a technical 

application, say building a bridge, could lead to errors which cause 

the bridge to fall down.
23

 Wittgenstein seizes on this claim and 

attempts over the course of the next several lectures to demonstrate 

that it is mistaken. That is, there are, according to Wittgenstein, only 

two ways in which our use of the calculus can lead to the bridge 

falling down: either because we use a wrong physical law (or get the 

value of a coefficient wrong, etc.) or because somebody makes a 

mistake in calculation and gets a wrong answer (although what 

counts as a wrong answer as opposed to a right one still must be 

somehow determined).
24

 In either case, however, it is not a contra- 

diction in the calculus that leads to the bridge falling down, and if 

such a contradiction actually arises we can choose to act on it as we 

like, or not at all.  In any case, the technical efficacy and utility of the 

calculus is not adversely affected by the presence of a contradiction, 

and so there is no need for “foundational research” directed to 

assuring the universal absence of contradictions in our logical sys- 

tems.  

   
III 

 

What, then, are the implications of Wittgenstein’s way of looking at 

the significance of the results of Gödel and Turing for the issues of 

computation, human capacities, and finitude?   

Interpretations of Gödel’s theorem have spawned a large liter- 

ature on issues of computationalism and the nature and capacities of 

the human mind. Much of this literature simply assumes Gödel’s 

way of looking at his own result in terms of incompleteness, but 

Wittgenstein’s way of looking at it evidently suggests an alternative.  

In particular, Gödel himself thought that the existence of the sen- 

tence P shows, for each formal system such as Principia Mathe- 

matica, the existence of a mathematical “truth” that that particular 

system cannot prove or disprove. Such “truths” are, according to 

Gödel’s informal argument, accessible to the human mind in a way 

that essentially transcends the powers of any formal system; thus 

Gödel himself thought (e.g., van Atten 2006, p. 256) that his result 
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demonstrated a superlative capacity of the human mind to grasp 

mathematical truths in excess of the powers of any formal system.
25

  

Subsequently, Lucas (1961) and Penrose (1994) have generalized 

this suggestion, holding that the combination of Gödel’s and Tu- 

ring’s result show that the human mind (for instance that of a human 

mathematician) is not mechanical in the sense that it cannot be 

modeled by any formal system or Turing machine. Thus, both 

conclude, the human mind has capacities for grasping mathematical 

truths that exceed those of any machine or wholly mechanical system.  

There are certainly many problems with this argument, some of 

which have been pointed out over the years; in the present context, 

however, it is sufficient to note that Wittgenstein’s different way of 

looking at the upshot of Gödel’s result in fact provides a dramatic 

alternative to it.
26

 As we saw, Wittgenstein’s remarks on Gödel 

suggest that he take it as showing at least that the actual production 

of the Gödel sentence will lead to contradictions or antinomies, 

although it is not evident that these contradictions must have the 

profound destructive significance that foundationalist assumptions 

about mathematics portray them as having. In any case, however, 

Gödel’s proof on the interpretation Wittgenstein probably intended 

does show that there is an essential limitation to the ability of any 

formal language to model itself completely and consistently; this is 

why the Gödel sentence, which “encodes” the logic of proof (and 

hence, on Wittgenstein’s reading, truth) for the system as a whole, 

leads to contradiction and antinomy.   

In a little-discussed 1985 paper, Putnam considers the impli- 

cations for computationalism of taking Gödel’s result in just this 

kind of way.
27

 As Putnam notes, projects in artificial intelligence and 

cognitive science have relied centrally on the distinction between 

(actual) performance and (ideal) competence. That is, according to a 

longstanding conception originating from Chomsky, at least part of 

the aim of such projects is to give a description of how the mind is 

“supposed” to work, how we would be thinking if we were ideally 

competent.  Both Harman and Chomsky himself have suggested that 

such an idealized “competence” description is indeed a description 

“of correct thinking in the normative sense.”
28

 However, even if 

there is such a description, would it be possible for us to know it?  

By way of a proof whose core is Gödel’s proof itself, Putnam shows 

that it would not. That is: “if there is a complete computational 

description of our own prescriptive competence – a description of the 
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way our minds ought to work, where the ought is the ought of 

deductive logic or inductive logic – then we cannot come to believe 

that that description is correct when our minds are in fact working 

according to the description” (p. 144). The reason for this is just the 

same as that underlying Gödel’s and Turing’s results – that it is 

impossible, on pain of contradiction, for a formal system completely 

to model itself. It follows that, as Putnam argues, if the aim of 

cognitive science is indeed to give such an idealized description of 

our own competence, then cognitive science is essentially looking 

for something that we cannot find.  In particular, even if we did find 

what is in fact the “correct” description of our ideal competence, we 

could not know that it was the correct one.   

What more general conclusion should we draw from this? As 

Putnam suggests, we may take the upshot in either an “optimistic” or 

a “pessimistic” way: “Like everything else, this theorem can be 

viewed either optimistically or pessimistically. The optimistic inter- 

pretation is: Isn’t it wonderful! We always have the power to go 

beyond any reasoning that we can survey and see to be sound.  

Reflexive reflection cannot totally survey itself. The pessimistic 

interpretation is: How sad!” (p. 144). Here, the “optimistic” and 

“pessimistic” ways of looking at the failure of reflexive reason to 

survey itself essentially correspond to the two ways of looking at 

Gödel’s result that we have already considered: Gödel’s own, on one 

hand, and Wittgenstein’s, on the other. In particular, the proponent of 

a Gödel-style interpretation sees the necessary failure of formal 

reason to survey itself as the sign of a superlative power or capacity, 

an ability of the human mind to non-formally exceed or “go beyond” 

all that formalism can model in itself. The proponent of the “pes- 

simistic,” Wittgenstein-style interpretation, on the other hand, takes 

the result wholly negatively – simply as showing that, as Putnam 

says, “reflexive reflection cannot totally survey itself,” without 

taking this to imply any superlative capacity of the human mind. 

With respect to computability, the analogue is apparently to take 

Turing’s result itself wholly negatively – that is, as showing that it is 

not possible, on pain of contradiction (or at least paradox) for our 

rational procedures to model themselves completely. This suggests 

that there will be, among these, some infinitary procedures that, 

although perfectly determinate, are not effectively computable. This 

by itself does not suffice to show what these procedures actually are, 

or to guarantee our access to them. But such infinitary techniques, 
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fixtures of human life that are not fixed, in their totality, by any finite 

symbolism, may be just what Wittgenstein is alluding to when, re- 

solving the rule-following paradox of the Philosophical Investi- 

gations, he suggests that:  
 

201. There is a way of grasping a rule which is not an 

interpretation, but which is shown in what we call 

‘obeying the rule’ and ‘going against it’ from case to 

case. 
 

And: 
 

199. To understand a language means to be master of a 

technique.  
 

Here, what Wittgenstein is suggesting is, importantly, not a super- 

lative capacity of human thought to grasp “truths” or follow “pro- 

cedures” that are inherently beyond the grasp of any mechanical 

system. Indeed, one of the central aims of the “rule-following 

considerations” is obviously to criticize any such conception of 

human ability to “leap beyond” all the finite examples and see an 

infinitary structure “all at once,” a conception that yields metaphors 

of the use of a word being present all at once “in a queer way” and of 

grasping the entirety of a use of a word “in a flash.”
29

 This con- 

ception is also of a piece with the conception of rules as “rails laid to 

infinity” and thus as capable, by themselves, of determining infinite 

usage mechanically and completely.
30

 On any of these metaphorical 

pictures, the whole use of a word – or the whole (infinite) extension 

of a mathematical series – is something that can be present “all at 

once” in the symbolism that expresses the rule.  However, given any 

such symbolism, it is of course always possible to interpret it in 

various different ways. This is what leads to the problem to which 

section 201 gives an answer, the problem that “no course of action 

could be determined by a rule, because any course of action can be 

made out to accord with the rule.” Given this, it looks as if it is 

indeed necessary to “give one interpretation after another,” inter- 

preting each (symbolic expression of a) rule with another until we 

realize that the second does no better than the first at guaranteeing 

the correct application, and so forth.   

This paradox is more or less unavoidable, on the assumption that 

a rule as symbolically expressed must be able to determine its own 

infinite extension completely. This means that to resolve the paradox, 
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we must get beyond the conception of rules according to which they 

are “self-interpreting,” or capable of determining their own appli- 

cations completely and without contradiction. To see that there is 

indeed a close analogy with Turing’s own formal result here, con- 

sider again the details of Turing’s formal argument for the un- 

decidability of the halting problem. To establish this result, we 

posited (for reductio) a universal Turing machine capable of solving 

the general halting problem, and then considered whether it halts 

when given its own machine number. The result was the con- 

tradiction that it both does and does not halt, and accordingly that 

there can be no such machine (on pain of contradiction, at least).  

The general reason for this contradiction was that, in determining 

whether the machine with each description number halts, the posited 

machine must consider itself, and thus is apparently involved in an 

infinite regress. This regress is similar to the regress of symbolic 

interpretations that occurs inevitably if we assume that a rule must be 

able to determine its own application. In particular, the demand that 

the rule determine the application of another one is essentially 

similar to the requirement that a particular Turing machine determine 

the halting status of another one; and the demand that a rule must be 

able ultimately to determine its own application is then analogous to 

the requirement that a universal Turing machine determine its own 

halting status. In both cases, the demand of self-determination leads 

to an intractable paradox that shows that this demand is not com- 

pletely and consistently satisfiable. Just as there is no mechanical 

procedure that solves the general halting problem, and thus no 

machine that can ultimately guarantee whether it, itself, halts, there 

is thus no way for any rule to guarantee the correctness of its own 

infinite application. 

This does not mean, of course, that the correctness of a rule’s 

application is guaranteed by something else, for instance (as we may 

now be tempted to think) an ineffable insight, or a power of human 

judgment or discernment that “essentially exceeds” anything me- 

chanical. Rather, as Wittgenstein repeatedly emphasizes, the right 

move when faced with the gap between the demand that the correct 

application must be determined by something “present to mind” and 

the rule’s incapacity to do so is not to appeal to any supplemental 

figure of ineffable force to fill the gap but rather to relax the demand 

that produces it. The result is that there is indeed no finite, symbolic 

expression – and hence nothing that can be “present to mind” all at 
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once, or already implicit in any determination of first principles or 

fundamental axioms – that indeed suffices by itself and outside of its 

practical context to determine and guarantee the distinction between 

correct and incorrect application in all cases. On the other hand, a 

“technique” or “practice” is, rather, essentially something that un- 

folds over time, and in the relationship between people.
31

 Thus, no 

symbolic expression or finitely capturable “capacity” has, as we may 

now say, the absolute force of a law which would be capable of 

determining the distinction between correctness and incorrectness all 

by itself. The task of philosophical criticism and “therapy” then 

shifts to a radical diagnosis and replacement of the assumption of 

(and the demand for) such a force. 

 
IV 

 

I have suggested, then, that Wittgenstein’s way of looking at the 

results of Gödel and, implicitly, Turing, gives us a way of conceiving 

of their implications that, although it bears important implications for 

the question of computationalism, does not tend to show (as the 

Gödel-Lucas-Penrose interpretation alleges) that the “mind is not a 

formal system” in that it has access to mathematical truths in excess 

of the grasp of any formal system. This does not, of course, imply 

that Wittgenstein would have agreed to the opposite claim that the 

“mind is a formal system,” or even would take it, ultimately, to have 

much of a clear sense.
32

 Indeed, one of the deepest aims of the whole 

line of argument that is developed in the rule-following con- 

siderations is to formulate a kind of critical resistance to pictures that 

identify human techniques and capacities with what are conceived of 

as the capacities of formal systems and as wholly present in their 

underlying structure. This resistance is deeply connected to Wittgen- 

stein’s critical interrogation of the conception of “logical inexora- 

bility” and “necessity” that these pictures suggest, and ultimately to 

his more basic inquiry into the sources of “logical necessity” and 

“rational compulsion” themselves.
33

 According to Wittgenstein, 

when we picture to ourselves the compulsory force of logical rules, 

we are led to think of logic as a kind of machinery underlying our 

actual practices of reasoning and inferring. Such a machinery would 

determine “in advance” and without exception the correct practices 

of logical inference and derivation; in this respect, it is akin to a kind 
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of “super-rigid” machine that contains all of its possible actions in 

itself by virtue of its ideal construction: 
 

A machine as symbolizing its action: the action of a 

machine—I might say at first – seems to be there in it 

from the start. What does that mean?—If we know the 

machine, everything else, that is its movement, seems to 

be already completely determined. (PI 193, p. 66) 
 

If we are to conceive of an actual machine this way, we must of 

course forget or abstract from the empirical possibility of its parts 

“bending, breaking off, melting, and so on.”  It is in fact just such an 

abstraction that is essential to our symbolizing the machine as such 

(for instance by means of a functional blueprint) and it is this alone 

that permits the movement of formalization whereby we consider 

any actually existing machine actually to “realize” or “amount to” an 

“ideal machine” such as a Turing machine or a computer. Wittgen- 

stein’s point is not that this forgetting or idealization is not some- 

times justified, but that it encourages a conception of logical 

necessity that is itself deeply misleading. For: 
 

…when we reflect that a machine could also have 

moved differently it may look as if the way it moves 

must be contained in the machine-as-symbol far more 

determinately than in the actual machine. As if it were 

not enough for the movements in question to be em- 

pirically determined in advance, but they had to be really 

– in a mysterious sense – already present.  And it is quite 

true: the movement of the machine-as-symbol is pre- 

determined in a different sense from that in which the 

movement of any given actual machine is predetermined.  

(PI 193, p. 66) 
 

The ideology of the super-rigid machine, in which all of its move- 

ments are already present, is thus the same as that of rules as self-

interpreting or as rails laid to infinity: in both cases, it is only by 

virtue of a movement of idealization and abstraction from actual 

cases that we gain the conception of an underlying presence that is 

actually effectively capable of determining the entirety of an infinite 

extension in advance. And this conception of a presence as capable 

of such an infinite determination is itself the same as the conception 

of the force of logical determination as that of a “super-hard” or 

inexorable law.   
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How, though, do we first arrive at such a conception? In a 

passage from the 1939 lectures devoted to the idea of a super-rigid 

“logical machinery,” Wittgenstein compares the source of the un- 

derlying idea of the “inexorability” of logical law to that of the 

inexorability of the law as such: 
 

Perhaps it would help to take the example of a perfectly 

inexorable or infinitely hard law, which condemns a man 

to death. 

A certain society condemns a man to death for a crime.  

But then a time comes when some judges condemn 

every person who has done so-and-so, but others let 

some go. One can then speak of an inexorable judge or a 

lenient judge. In a similar way, one may speak of an 

inexorable law or a lenient law, meaning that it fixes the 

penalty absolutely or has loopholes. But one can also 

speak of an inexorable law in another sense. One may 

say that the law condemns him to death, whether or not 

the judges do so.  And so one says that, even though the 

judge may be lenient, the law is always inexorable.  

Thus we have the idea of a kind of super-hardness. 

How does the picture come into our minds? We first 

draw a parallel in the expressions used in speaking of the 

judge and in speaking of the law: we say “the judge 

condemns him” and also “the law condemns him”. We 

then say of the law that it is inexorable – and then it 

seems as though the law were more inexorable than any 

judge – you cannot even imagine that the law should be 

lenient. (Diamond 1976, p. 197) 
 

The image of the ideal inexorability of the law is thus, like the 

picture of the super-rigid machine itself, produced out of a kind of 

false parallel or crossing between two expressions, one that is used 

ordinarily to describe judges, and another that is used (perhaps 

metaphorically) to speak of the law itself. The diagnosis does not 

imply that either the picture of the inexorability of the law or that of 

the super-rigidity of logical machinery is completely out of order, 

false, or nonsensical; either picture may indeed have its legitimate 

uses. However, it does suffice to show that both are grounded in a 

kind of essential confusion: 
 

 …if I say that there is no such thing as the super-rigidity 

of logic, the real point is to explain where this idea of 
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super-rigidity comes from – to show that the idea of 

super-rigidity does not come from the same source 

which the idea of rigidity comes from. The idea of 

rigidity comes from comparing things like butter and 

elastic with things like iron and steel. But the idea of 

super-rigidity comes from the interference of two pic- 

tures – like the idea of the super-inexorability of the law.  

First we have: “The law condemns”, “The judge con- 

demns”. Then we are led by the parallel use of the 

pictures to a point where we are inclined to use a 

superlative. We have then to show the sources of this 

superlative, and that it doesn’t come from the source the 

ordinary idea comes from. (Diamond 1976, p. 199)  
 

That is, it is only by means of this sort of crossing or confusion 

between two pictures that we gain the idea of the inexorable law of 

logic, and hence of its force in regulating our life and practices. This 

corresponds, as we have seen, to what is often called “normative” 

force, and conceived as a distinctive kind of force that is both distinct 

from and stronger and more inexorable than any kind of empirical or 

physical force. This conception is the same as that of the normativity 

of logical rules, or of the “self-applying” rule which is able to 

determine its own application in a logical and normative sense. The 

diagnosis of the origin of these pictures in a crossing or confusion 

between the empirical attributes of actual machines (for which it 

makes sense to say that one is more or less rigid than another) and 

the posited non-empirical attributes of an ideal machine makes it 

clear that the conception of the inexorable normative force of logic is 

itself grounded in such a confusion, and dissipates with its successful 

diagnosis. 

This does not mean that the “normativity” that is involved in 

ordinary practices of rational deliberation and calculation which 

proceed, in part, by way of the citation and discussion of explicit 

rules, should be dismissed as simply illusory or fictitious. But it does 

imply that the underlying source of this normativity cannot be in 

these rules themselves (as symbolically expressed or expressible), 

but must have a deeper ground in the kinds of “agreement” and 

“attunement” that constitute our “forms of life,” and thereby pre- 

condition the possibility of all techniques and practices as such. We 

can draw much the same conclusion, moreover, about the “nor- 

mativity” exhibited by instruments and techniques of calculation, 

including actual symbolic computing machines or computers. Here, 
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as the results of Turing and Wittgenstein both show, the ability of 

such instruments and devices to determine the distinction between 

correct and incorrect results (or, for instance, correct and incorrect 

ways of extending a function) does not and cannot rest entirely on 

anything given or wholly determined by the actual construction of 

the instruments and devices themselves. It depends, instead, on the 

pre-existing practices, techniques, and ways of life in which these 

instruments and devices have their normal roles.
34 

If this is right, though, and the practical interpretation of a given 

object or piece of machinery depends on our pre-existing ability to 

distinguish between “correct” and “incorrect” instances of com- 

putation, then the normativity involved in this distinction again 

essentially cannot be given wholly by any computable system of 

rules itself. It must, instead, already be a precondition of our ability 

to take any set of symbols or physical system as the expression or 

implementation of any such system. This implies, again, that any 

attempt to ground our judgments of correctness or incorrectness in 

the inexorable force of a “logical machine” that determines the 

interpretation of its own symbolism, or the implementation of its 

own computations, all by itself and outside the context of any human 

practices, must inevitably fail. Our practical attitudes toward the 

rules embodied in actual computers, and the kinds of normative force 

they represent or enforce, are to the contrary very much aspects of 

our everyday lives and practices with them, and accordingly cannot 

be separated from these ordinary practices. The normativity that we 

expect from, and regularly find, in the actions of computers is not 

simply an outcome of their actual construction or their “ideal” 

architecture, but is rather possible only on the basis of the kinds of 

“agreement” that first enable us to engage in shared practices at all.  

As Wittgenstein emphasizes, this agreement is not underlain or 

guaranteed by any technical or technological form of regularity or 

repetition. At the same time, however, it is not at all a contingent 

agreement on specific (as it may be, “historically situated”) practices, 

norms, or conventions. For: 
 

…the logical ‘must’ is a component part of the propo- 

sitions of logic, and these are not propositions of human 

natural history. If what a proposition of logic said was: 

Human beings agree with one another in such and such 

ways (and that would be the form of the natural-his- 

torical proposition), then its contradictory would say that 
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there is here a lack of agreement. Not, that there is an 

agreement of another kind. (RFM VI-49, p. 353)35 

 

NOTES 
 

1. Some discussions among Wittgenstein, Turing, and Wittgenstein’s stu- 

dent Alister Watson had reportedly taken place earlier, in the summer of 1937, 

but there is no record of these. (Hodes 1983, pp. 109, 136 – cited in Floyd and 

Putnam (2000)) 

2. Wittgenstein (1939), p. 13. 

3. Wittgenstein (1939), p. 14. 

4. “We have said that the computable numbers are those whose decimals are 

calculable by finite means. This requires rather more explicit definition … For 

the present I shall only say that the justification lies in the fact that the human 

memory is necessarily limited” (p. 59); “The behaviour of the computer at any 

moment is determined by the symbols which he is observing, and his ‘state of 

mind’ at that moment. We may suppose that there is a bound B to the number of 

symbols or squares which the computer can observe at one moment … We will 

also suppose that the number of states of mind which need to be taken into 

account is finite. The reasons for this are of the same character as those which 

restrict the number of symbols” (pp. 75–76). Turing also emphasizes (p. 79) that 

there must at any moment be a symbolically stateable description which, if the 

computer broke off work at any particular stage, would determinately instruct 

another as to how to continue.   

5. More specifically, H combines the universal machine U with a “decision 

machine” D which, when given the description number of any particular 

machine, determines whether that machine halts.   

6. The demonstration is on pp. 72–73. 

7. Since, as Turing argues, “If the negation of what Gödel has shown had 

been proved … we should have an immediate solution to the Entschei- 

dungsproblem,” (p. 85) it follows that Turing’s result – that there is no solution to 

the Entscheidungsproblem – implies Gödel’s first incompleteness theorem. 

8. It may be objected that the original proof of Cantor’s theorem, which 

establishes the superiority of the cardinality of the power set over the initial set, 

does not make use of syntactic reasoning (I owe this objection to a discussion 

with John Bova, although it does not represent his view).  But: i) since Cantor’s 

proof does not obviously involve entertaining or carrying out any infinite 

procedure, it is not clear that it is an instance of the “diagonal procedure” at all; 

and ii) insofar as it involves the assumption for reduction of a 1-1 cor- 

respondence between sets and their subsets, it does involve (at least where the 

sets are infinite) something like a comparison of the infinite set with its finite 

elements, something very similar to the “comparison” of an infinitary procedure 

with its finitely expressed rule in syntactical diagonalization.   
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9. RFM II – 38: “Here it is important to grasp the relationship between a 

series in the non-mathematical sense and one in the mathematical sense.  It is of 

course clear that in mathematics we do not use the word ‘series of numbers’ in 

the sense ‘series of numerical signs,’ even though, of course, there is also a 

connexion between the use of the one expression and of the other. … A ‘series’ 

in the mathematical sense is a method of construction for series of linguistic 

expressions”  (p. 136).  

10. Gödel’s original article is titled “On Formally Undecidable Propositions 

of Principia Mathematica and Related Systems I” and mentions “incom- 

pleteness” only once, in a footnote: “The true reason for the incompleteness 

which attaches to all formal systems of mathematics lies – as will be shown in 

Part II of this paper – in the fact that the formation of higher and higher types can 

be continued into the transfinite (cf. D. Hilbert 'Über das Unendliche', Math. 

Ann. 95, p. 184), while, in every formal system, only countably many are 

available. Namely, one can show that the undecidable sentences which have been 

constructed here always become decidable through adjunction of sufficiently 

high types (e.g. of the type w to the system P). A similar result holds for the 

axiom systems of set theory.” (footnote 48a, pp. 28–29). 

11. Thus: “From the remark that [R(q); q] asserts its own unprovability it 

follows immediately that [R(q); q] is true, since [R(q); q] is indeed unprovable 

(because it is undecidable). The proposition undecidable in the system PM is thus 

decided by metamathematical arguments” (p. 9). As Gödel emphasizes, this re- 

mark comes as part of a “sketch of the main ideas of the proof” that does not 

make “any claim to rigor” (p. 6).   

12. Floyd and Putnam (2000), p. 625. For further discussion, see Steiner 

(2001), Bays (2004), and Floyd and Putnam (2006).   

13. Floyd and Putnam (2000), pp. 624–26. A system is ω-inconsistent if, for 

some property T of natural numbers formulable in the system, the system proves 

T(0), T(1), and so forth, but also proves that there is some natural number n such 

that ~T(n).  Note that a system may be ω-inconsistent but still consistent.   

14. Floyd and Putnam (2000), p. 632. 

15. Cf. PI 136.  

16. Cf. Priest (2004). 

17. Priest (2004), p. 213: “Consider the sentence A, of the form ‘<A> is not 

provable’ – this sentence is not provable – angle brackets represent some naming 

device. Here, provability is to be understood in the naïve sense of being 

demonstrated by some argument or other. If A is provable, then, since what is 

provable is true, A is true; so <A> is not provable. Hence, <A> is not provable. 

But we  have just proved this; that is, <A> is provable.  This is a version of the 

‘Knower paradox’. Sometimes it is called ‘Gödel’s paradox’. In fact, if one 

identifies truth with provability, as does Wittgenstein, Gödel’s paradox and the 

liar collapse into each other.” 

18. Cf. Priest (2004), p. 223: “According to the model-theoretic account of 

truth, the equivalence (I) [viz. the interpretation of the Gödel sentence as saying 

‘P iff P is not provable in Principia’] is unproblematic. In the context that 
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Wittgenstein is operating in, it is not, and this allows him to question it.  In 

particular, he can ask exactly what the right-hand side means.  This allows him to 

take the discussion into areas beyond those normally countenanced in dis- 

cussions of Gödel’s theorem. In particular, Wittgenstein deploys the idea that the 

meaning of a sentence is determined by its proof conditions.  In virtue of the fact 

that there are object-level proofs and meta-level proofs (to put it in modern 

terminology), this still leaves the notions concerned in (I) ambiguous. Except for 

one circumstance [i.e. that Principia is inconsistent], however, he thinks that 

once one clarifies the relevant meanings, the equivalence (I) should be rejected.  

In this case, no contradiction is forthcoming.”   

19. Of course, PM (etc.) contain rules establishing that “from a contradiction, 

anything follows.” However, it is clear that there are grounds for being skeptical 

that, even if this is true, and “anything follows” in the formal sense, a single 

contradiction is indeed enough to render the calculus useless; see below.   

20. What, though, is in fact the ultimate basis for our belief in the con- 

sistency of a system such as Principia Mathematica? The usual basis is model-

theoretical arguments, but if we dispute that a model-theoretical notion of truth is 

appropriate here, we may well doubt these arguments. Moore (2001, p. 177–180) 

argues in a related context that we can take the set-theoretical axiom framework 

ZF to be sound (and hence consistent) if we can “recognize” its axioms as 

intuitively correct.  However, what is the ground for such a “recognition”? In any 

case, because of the Gödel sentence, Principa Mathematica is certainly not 

consistent if we allow the “disquotational” rule Prov(x) -> x.  

21. RFM, I, appendix III, remark 17 (p. 122).   

22. PI 125. 

23. Lecture 21, p. 211. 

24. Lecture 22, p. 211. 

25. Thus, Gödel wrote in 1963: “Before my results had been obtained it was 

conjectured that any precisely formulated mathematical yes or no question can be 

decided by the mechanical rules of logical inference on the basis of a few 

mathematical axioms. In 1931 I proved that this is not so.  i.e.: No matter what & 

how many axioms are chosen there always exist number theoretical yes or no 

questions which cannot be decided from these axioms.  Combining the proof of 

this result with Turing’s theory of computing machines one arrives at the 

following conclusion: Either there exist infinitely many number theoretical 

questions which the human mind is unable to answer or the human mind … 

contains an element totally different from a finite combinatorial mechanism, such 

as a nerve net acting like an electronic computer. I hope I shall be able to prove 

on mathematical, philosophical, & psychological grounds that the second alter- 

native … holds” (van Atten, 2006).  

26. The most important of the problems with the Lucas-Penrose argument in 

the present context is that it requires the actual manifestation of a true formula T 

of arithmetic such that a certain actual computer C cannot give a proof of T, but 

there is a human mind, M, that can. No one has ever actually manifested such a 

formula, and there is reason to think that it indeed cannot be demonstrated by any 
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effective procedure. To see this, observe that to find such a formula, given any 

actual computer C, we would have to first distinguish those portions of its output 

that actually count as proofs from those that do not. As Priest (1994, pp. 111–

115) argues, there is, however, probably no effective way to do this; and even if 

we do, the set of theorems T proved by any actual computer C will probably turn 

out to be inconsistent. Priest writes: “The only way … that offers any hope of 

getting T to be consistent is to suppose that M (and so any C which is supposed 

to be M) is not only a mathematical mind but an ideal mathematical mind, that 

never makes mistakes of any kind: either of memory, inference, judgment, or 

output. But this is sufficient to destroy the argument. After all, the only candidate 

for a mind of this kind is God’s. So at best, we have a (theo)logical proof that 

God is not a computer” (p. 113).  

27. Putnam (1985). 

28. Putnam (1985), p. 149.   

29. PI 191, 195. 

30. PI 218. 

31. Cf. PI 199: “Is what we call ‘obeying a rule’ something that it would be 

possible for only one man to do, and to do only once in his life?—This is of 

course a note on the grammar of the expression ‘to obey a rule’.   

It is not possible that there should have been only one occasion on which only 

one person obeyed a rule. It is not possible that there should have been only one 

occasion on which a report was made, an order given or understood; and so 

on.—To obey a rule, to make a report, to give an order, to play a game of chess, 

are customs (uses, institutions).  

To understand a sentence means to understand a language. To understand a 

language means to be master of a technique.”   

32. Cf. PI 359–60.   

33. Cf. RFM I–117: “In what sense is logical argument a compulsion?— 
‘After all you grant this and this; so you must also grant this!’  That is the way of 

compelling someone. That is to say, one can in fact compel people to admit 

something in this way.—Just as one can e.g. compel someone to go over there by 

pointing over there with a bidding gesture of the hand” (p. 81).  

34. This is particularly evident in connection with what have been called 

“triviality” arguments about computation and effectiveness. According to 

such arguments, every physical object (or every object of a certain, very 

minimally specified level of operational complexity) at every time trivially 

implements every possible computation, since there is always some function 

that maps the internal physical states of the object onto the computational 

states involved in carrying out any particular computation. Thus, on Searle’s 

memorable formulation: “…the wall behind my back is right now im- 

plementing the Wordstar program, because there is some pattern of molecule 

movements that is isomorphic with the formal structure of Wordstar. But if 

the wall is implementing Wordstar, if it is a big enough wall it is im- 

plementing any program, including any program implemented in the brain” 

(Searle 1992). Such arguments have been used as well, most notably by 
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Putnam himself (in Putnam 1991) to argue against computational and func- 

tionalist theories of mind by showing that there is no unique functional 

description that characterizes the operation of the human brain (or any other 

mechanical system) at any time, and accordingly no hope for the “com- 

putationalist” project which attempts to discover such a (unique) description. 

As respondents to the triviality arguments (e.g. Block 1995, Chalmers 1995) 

have pointed out, we can solve the problem of triviality if – and only if – we 

can already presuppose a distinction between the correct and incorrect func- 

tioning of the machine. Thus, for instance, I can “interpret” the machinery in 

front of me as calculating the “plus” function only if I am in a position to 

distinguish between correct and incorrect responses to (what I interpret as) a 

query, for instance “2+3=?”; and I will indeed be inclined to interpret the 

machinery as calculating the “plus” function only if I can assume that it 

reliably gives (what I deem to be) correct responses to this query. It is 

important to note, however, that there is nothing that guarantees such 

reliability (any actual machine might “break down” at any moment), and no 

sharp line between what kinds of behavior count as “reliable” and what 

evidences “unreliability” in this sense.   

35. Earlier and shorter versions of this paper were presented at the Austrian 

Ludwig Wittgenstein Symposium in Kirchberg am Wechsel, August, 2009, and 

at the North American Wittgenstein Society in San Francisco, March 2010. I 

wish to thank John Bova for extensive discussions about the issues considered 

here, and Jack Woods for his extensive and helpful commentary on the paper at 

the NAWS session.   
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